--- base_model: finiteautomata/bertweet-base-sentiment-analysis tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertweet-olid results: [] --- # bertweet-olid This model is a fine-tuned version of [finiteautomata/bertweet-base-sentiment-analysis](https://huggingface.co/finiteautomata/bertweet-base-sentiment-analysis) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0303 - Accuracy: 0.8104 - F1: 0.8082 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3675 | 1.0 | 774 | 0.4257 | 0.8233 | 0.8217 | | 0.3006 | 2.0 | 1548 | 0.3651 | 0.8385 | 0.8383 | | 0.2461 | 3.0 | 2322 | 0.4812 | 0.8301 | 0.8298 | | 0.202 | 4.0 | 3096 | 0.6835 | 0.8324 | 0.8324 | | 0.1533 | 5.0 | 3870 | 1.0303 | 0.8104 | 0.8082 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2