--- license: llama3.2 language: - en - ja - de - fr - it - pt - hi - es - th library_name: transformers pipeline_tag: text-generation base_model: meta-llama/Llama-3.2-3B datasets: - ryota39/izumi-lab-dpo-45k - Aratako/Magpie-Tanuki-8B-97k - kunishou/databricks-dolly-15k-ja - kunishou/oasst1-89k-ja tags: - llama3.2 --- chibi img ## Preface Small parameter LLMs are ideal for navigating the complexities of the Japanese language, which involves multiple character systems like kanji, hiragana, and katakana, along with subtle social cues. Despite their smaller size, these models are capable of delivering highly accurate and context-aware results, making them perfect for use in environments where resources are constrained. Whether deployed on mobile devices with limited processing power or in edge computing scenarios where fast, real-time responses are needed, these models strike the perfect balance between performance and efficiency, without sacrificing quality or speed. ## Llama 3.2 Chibi 3B This experimental model is a result from continual pre-training of [Meta's Llama 3.2 3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on a small mixture of japanese datasets. ## Architecture [Llama 3.2 3B](https://huggingface.co/meta-llama/Llama-3.2-3B) ## Training The model has been trained with the following mixture of datasets: - [ryota39/izumi-lab-dpo-45k](https://huggingface.co/datasets/ryota39/izumi-lab-dpo-45k) - [Aratako/Magpie-Tanuki-8B-97k](https://huggingface.co/datasets/Aratako/Magpie-Tanuki-8B-97k) - [kunishou/databricks-dolly-15k-ja](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [kunishou/oasst1-89k-ja](https://huggingface.co/datasets/kunishou/oasst1-89k-ja) ## Contributors - [Hammaam](https://huggingface.co/AELLM) ## How to use Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. ```python import torch from transformers import pipeline model_id = "AELLM/Llama-3.2-Chibi-3B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto" ) pipe("人生の鍵は") ``` # License Refer to [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) # References ```bibtex @inproceedings{zheng2024llamafactory, title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models}, author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma}, booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)}, address={Bangkok, Thailand}, publisher={Association for Computational Linguistics}, year={2024}, url={http://arxiv.org/abs/2403.13372} } ```