--- license: mit base_model: joeddav/xlm-roberta-large-xnli tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-v3.0 results: [] --- # xlm-roberta-large-xnli-v3.0 This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2434 - F1 Macro: 0.9286 - F1 Micro: 0.9287 - Accuracy Balanced: 0.9296 - Accuracy: 0.9287 - Precision Macro: 0.9288 - Recall Macro: 0.9296 - Precision Micro: 0.9287 - Recall Micro: 0.9287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 40 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.2328 | 1.69 | 200 | 0.2811 | 0.8942 | 0.8942 | 0.8943 | 0.8942 | 0.8942 | 0.8943 | 0.8942 | 0.8942 | ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|1.38|0.25|0.277|0.243| |eval_f1_macro|0.583|0.925|0.91|0.929| |eval_f1_micro|0.584|0.925|0.91|0.929| |eval_accuracy_balanced|0.592|0.925|0.91|0.93| |eval_accuracy|0.584|0.925|0.91|0.929| |eval_precision_macro|0.595|0.925|0.91|0.929| |eval_recall_macro|0.592|0.925|0.91|0.93| |eval_precision_micro|0.584|0.925|0.91|0.929| |eval_recall_micro|0.584|0.925|0.91|0.929| |eval_runtime|50.84|0.65|0.123|0.51| |eval_samples_per_second|167.193|1455.491|1531.96|1484.664| |eval_steps_per_second|2.616|23.079|24.317|23.535| |Size of dataset|8500|946|189|757| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3