--- license: apache-2.0 tags: - token-classification datasets: - conll2003 - conllpp language: - en metrics: - f1: 92.85 - f1(valid): 96.71 - f1(CoNLLpp(2023)): 92.35 - f1(CoNLLpp(CrossWeigh)): 94.26 --- # Roberta-Base-CoNLL2003 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the conll2003 dataset. ## Model Usage We made and used the original tokenizer with [BPE-Dropout](https://aclanthology.org/2020.acl-main.170/). So, you can't use AutoTokenizer but if subword normalization is not used, original RobertaTokenizer can be substituted. Example and Tokenizer Repository: [github](https://github.com/4ldk/CoNLL2003_Choices) ```python from transformers import RobertaTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = RobertaTokenizer.from_pretrained("4ldk/Roberta-Base-CoNLL2003") model = AutoModelForTokenClassification.from_pretrained("4ldk/Roberta-Base-CoNLL2003") nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True) example = "My name is Philipp and live in Germany" nlp(example) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-5 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: AdamW with betas=(0.9,0.999), epsilon=1e-08, and weight decay=0.01 - lr_scheduler_type: linear with warmup rate = 0.1 - num_epochs: 20 - subword regularization p = 0.0 (= trained without subword regularization) And we add the sentences following the input sentence in the original dataset. Therefore, it cannot be reproduced from the dataset published on huggingface. ### Training results #### CoNNL2003 It achieves the following results on the evaluation set: - Precision: 0.9707 - Recall: 0.9636 - F1: 0.9671 It achieves the following results on the test set: - Precision: 0.9352 - Recall: 0.9218 - F1: 0.9285 #### CoNNLpp(2023) [Do CoNLL-2003 Named Entity Taggers Still Work Well in 2023]( https://aclanthology.org/2023.acl-long.459.pdf) ([github](https://github.com/ShuhengL/acl2023_conllpp)) - Precision: 0.9244 - Recall: 0.9225 - F1: 0.9235 #### CoNLLpp(CrossWeigh) [CrossWeigh: Training Named Entity Tagger from Imperfect Annotations](https://aclanthology.org/D19-1519/) ([github](https://github.com/ZihanWangKi/CrossWeigh)) - Precision: 0.9449 - Recall: 0.9403 - F1: 0.9426 ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117