Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- token-classification
|
5 |
+
datasets:
|
6 |
+
- conll2003
|
7 |
+
- conllpp
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
metrics:
|
11 |
+
- f1: 92.85
|
12 |
+
- f1(valid): 96.71
|
13 |
+
- f1(CoNLLpp(2023)): 92.35
|
14 |
+
- f1(CoNLLpp(CrossWeigh)): 94.26
|
15 |
+
---
|
16 |
+
|
17 |
+
|
18 |
+
# Roberta-Base-CoNLL2003
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the conll2003 dataset.
|
21 |
+
|
22 |
+
## Model Usage
|
23 |
+
|
24 |
+
We create the original tokenizer with [BPE-Dropout](https://aclanthology.org/2020.acl-main.170/).
|
25 |
+
So, you can't use AutoTokenizer but if subword normalization is not used, original RobertaTokenizer can be substituted.
|
26 |
+
|
27 |
+
Example and Tokenizer Repository: [github](https://github.com/4ldk/CoNLL2003_Choices)
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import RobertaTokenizer, AutoModelForTokenClassification
|
31 |
+
from transformers import pipeline
|
32 |
+
|
33 |
+
tokenizer = RobertaTokenizer.from_pretrained("4ldk/Roberta-Base-CoNLL2003")
|
34 |
+
model = AutoModelForTokenClassification.from_pretrained("4ldk/Roberta-Base-CoNLL2003")
|
35 |
+
|
36 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
37 |
+
example = "My name is Philipp and live in Germany"
|
38 |
+
|
39 |
+
nlp(example)
|
40 |
+
|
41 |
+
```
|
42 |
+
|
43 |
+
|
44 |
+
## Training procedure
|
45 |
+
|
46 |
+
### Training hyperparameters
|
47 |
+
|
48 |
+
The following hyperparameters were used during training:
|
49 |
+
- learning_rate: 5e-5
|
50 |
+
- train_batch_size: 32
|
51 |
+
- eval_batch_size: 32
|
52 |
+
- seed: 42
|
53 |
+
- optimizer: AdamW with betas=(0.9,0.999), epsilon=1e-08, and weight decay=0.01
|
54 |
+
- lr_scheduler_type: linear with warmup rate = 0.1
|
55 |
+
- num_epochs: 20
|
56 |
+
- subword regularization p = 0.0 (= trained without subword regularization)
|
57 |
+
|
58 |
+
And we add the sentences following the input sentence in the original dataset. Therefore, it cannot be reproduced from the dataset published on huggingface.
|
59 |
+
For detail in [our github repository](https://github.com/4ldk/CoNLL2003_Choices/blob/develop/src/utils.py)).
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
#### CoNNL2003
|
64 |
+
|
65 |
+
It achieves the following results on the evaluation set:
|
66 |
+
- Precision: 0.9707
|
67 |
+
- Recall: 0.9636
|
68 |
+
- F1: 0.9671
|
69 |
+
|
70 |
+
It achieves the following results on the test set:
|
71 |
+
- Precision: 0.9352
|
72 |
+
- Recall: 0.9218
|
73 |
+
- F1: 0.9285
|
74 |
+
|
75 |
+
#### CoNNLpp(2023)
|
76 |
+
|
77 |
+
[Do CoNLL-2003 Named Entity Taggers Still Work Well in 2023](
|
78 |
+
https://aclanthology.org/2023.acl-long.459.pdf)
|
79 |
+
([github](https://github.com/ShuhengL/acl2023_conllpp))
|
80 |
+
|
81 |
+
- Precision: 0.9244
|
82 |
+
- Recall: 0.9225
|
83 |
+
- F1: 0.9235
|
84 |
+
|
85 |
+
#### CoNLLpp(CrossWeigh)
|
86 |
+
|
87 |
+
[CrossWeigh: Training Named Entity Tagger from Imperfect Annotations](https://aclanthology.org/D19-1519/)
|
88 |
+
([github](https://github.com/ZihanWangKi/CrossWeigh))
|
89 |
+
|
90 |
+
- Precision: 0.9449
|
91 |
+
- Recall: 0.9403
|
92 |
+
- F1: 0.9426
|
93 |
+
|
94 |
+
|
95 |
+
### Framework versions
|
96 |
+
|
97 |
+
- Transformers 4.35.2
|
98 |
+
- Pytorch 2.0.1+cu117
|