3loi's picture
Upload model
e680b4f verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel
from transformers.modeling_utils import PreTrainedModel ,PretrainedConfig
class Pooling(nn.Module):
def __init__(self):
super().__init__()
def compute_length_from_mask(self, mask):
"""
mask: (batch_size, T)
Assuming that the sampling rate is 16kHz, the frame shift is 20ms
"""
wav_lens = torch.sum(mask, dim=1) # (batch_size, )
feat_lens = torch.div(wav_lens-1, 16000*0.02, rounding_mode="floor") + 1
feat_lens = feat_lens.int().tolist()
return feat_lens
def forward(self, x, mask):
raise NotImplementedError
class MeanPooling(Pooling):
def __init__(self):
super().__init__()
def forward(self, xs, mask):
"""
xs: (batch_size, T, feat_dim)
mask: (batch_size, T)
=> output: (batch_size, feat_dim)
"""
feat_lens = self.compute_length_from_mask(mask)
pooled_list = []
for x, feat_len in zip(xs, feat_lens):
pooled = torch.mean(x[:feat_len], dim=0) # (feat_dim, )
pooled_list.append(pooled)
pooled = torch.stack(pooled_list, dim=0) # (batch_size, feat_dim)
return pooled
class AttentiveStatisticsPooling(Pooling):
"""
AttentiveStatisticsPooling
Paper: Attentive Statistics Pooling for Deep Speaker Embedding
Link: https://arxiv.org/pdf/1803.10963.pdf
"""
def __init__(self, input_size):
super().__init__()
self._indim = input_size
self.sap_linear = nn.Linear(input_size, input_size)
self.attention = nn.Parameter(torch.FloatTensor(input_size, 1))
torch.nn.init.normal_(self.attention, mean=0, std=1)
def forward(self, xs, mask):
"""
xs: (batch_size, T, feat_dim)
mask: (batch_size, T)
=> output: (batch_size, feat_dim*2)
"""
feat_lens = self.compute_length_from_mask(mask)
pooled_list = []
for x, feat_len in zip(xs, feat_lens):
x = x[:feat_len].unsqueeze(0)
h = torch.tanh(self.sap_linear(x))
w = torch.matmul(h, self.attention).squeeze(dim=2)
w = F.softmax(w, dim=1).view(x.size(0), x.size(1), 1)
mu = torch.sum(x * w, dim=1)
rh = torch.sqrt((torch.sum((x**2) * w, dim=1) - mu**2).clamp(min=1e-5))
x = torch.cat((mu, rh), 1).squeeze(0)
pooled_list.append(x)
return torch.stack(pooled_list)
class EmotionRegression(nn.Module):
def __init__(self, *args, **kwargs):
super(EmotionRegression, self).__init__()
input_dim = args[0]
hidden_dim = args[1]
num_layers = args[2]
output_dim = args[3]
p = kwargs.get("dropout", 0.5)
self.fc=nn.ModuleList([
nn.Sequential(
nn.Linear(input_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.ReLU(), nn.Dropout(p)
)
])
for lidx in range(num_layers-1):
self.fc.append(
nn.Sequential(
nn.Linear(hidden_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.ReLU(), nn.Dropout(p)
)
)
self.out = nn.Sequential(
nn.Linear(hidden_dim, output_dim)
)
self.inp_drop = nn.Dropout(p)
def get_repr(self, x):
h = self.inp_drop(x)
for lidx, fc in enumerate(self.fc):
h=fc(h)
return h
def forward(self, x):
h=self.get_repr(x)
result = self.out(h)
return result
class SERConfig(PretrainedConfig):
model_type = "ser"
def __init__(
self,
num_classes: int = 8,
num_attention_heads = 16,
num_hidden_layers = 24,
hidden_size = 1024,
classifier_hidden_layers = 1,
classifier_dropout_prob = 0.5,
ssl_type= "microsoft/wavlm-large",
torch_dtype= "float32",
mean= -8.278621631819787e-05,
std=0.08485510250851999,
**kwargs,
):
self.num_classes = num_classes
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.hidden_size = hidden_size
self.classifier_hidden_layers = classifier_hidden_layers
self.classifier_dropout_prob = classifier_dropout_prob
self.ssl_type = ssl_type
self.torch_dtype = torch_dtype
self.mean = mean
self.std = std
super().__init__(**kwargs)
class SERModel(PreTrainedModel):
config_class = SERConfig
def __init__(self, config):
super().__init__(config)
self.ssl_model = AutoModel.from_pretrained(config.ssl_type)
self.ssl_model.freeze_feature_encoder()
self.pool_model = AttentiveStatisticsPooling(config.hidden_size)
self.ser_model = EmotionRegression(config.hidden_size*2,
config.hidden_size,
config.classifier_hidden_layers,
config.num_classes,
dropout=config.classifier_dropout_prob)
def forward(self, x, mask):
ssl = self.ssl_model(x, attention_mask=mask).last_hidden_state
ssl = self.pool_model(ssl, mask)
pred = self.ser_model(ssl)
return pred