File size: 10,393 Bytes
1680a25 db4cfaa 1680a25 db4cfaa 1680a25 9de3576 52c8e22 1680a25 db4cfaa 1680a25 db4cfaa 1680a25 db4cfaa 1680a25 db4cfaa 1680a25 52c8e22 ebcbd64 52c8e22 ebcbd64 db4cfaa 1680a25 db4cfaa 9de3576 db4cfaa 1680a25 9de3576 52c8e22 1680a25 db4cfaa 9de3576 db4cfaa 1680a25 52c8e22 1680a25 52c8e22 1680a25 52c8e22 1680a25 52c8e22 1680a25 52c8e22 1680a25 52c8e22 1680a25 52c8e22 1680a25 52c8e22 1680a25 ebcbd64 1680a25 db4cfaa ebcbd64 db4cfaa 1680a25 52c8e22 1680a25 52c8e22 3ac15e6 1680a25 0b6a77f 1680a25 52c8e22 1680a25 3ac15e6 1680a25 52c8e22 1680a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
---
base_model: unsloth/qwen2.5-coder-32b-instruct-bnb-4bit
library_name: peft
datasets:
- 100suping/ko-bird-sql-schema
- won75/text_to_sql_ko
language:
- ko
pipeline_tag: text-generation
tags:
- SQL
- lora
- adapter
- instruction-tuning
---
# 100suping/Qwen2.5-Coder-34B-Instruct-kosql-adapter
<!-- Provide a quick summary of what the model is/does. -->
This Repo contains **LoRA (Low-Rank Adaptation) Adapter** for [unsloth/qwen2.5-coder-32b-instruct-bnb-4bit]
The Adapter was trained for **improving model's SQL generation capability** in **Korean question & multi-db context**.
This adapter was created through **instruction tuning**.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Base Model:** unsloth/Qwen2.5-Coder-32B-Instruct
- **Task:** Instruction Following(Korean)
- **Language:** English (or relevant language)
- **Training Data:** 100suping/ko-bird-sql-schema, won75/text_to_sql_ko
- **Model type:** Causal Language Models.
- **Language(s) (NLP):** Multi-Language
## How to Get Started with the Model
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
To use this LoRA adapter, refer to the following code:
### Adapter Loading
```
from transformers import BitsAndBytesConfig
def get_bnb_config(bit=8):
if bit == 8:
return BitsAndBytesConfig(load_in_8bit=True)
else:
print(f"You put {bit} bit in argument.\nWhatever the number you put in, if it is not 8 then 4bit config would be returned.")
return BitsAndBytesConfig(load_in_4bit=True)
```
```
from unsloth import FastLanguageModel
model_name = "unsloth/Qwen2.5-Coder-32B-Instruct"
adapter_revision = "checkpoint-200" # checkpoint-100 ~ 350, main(which is checkpoint-384)
bnb_config = get_bnb_config(bit=bit)
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
dtype=None,
quantization_config=bnb_config,
)
model.load_adapter("100suping/Qwen2.5-Coder-34B-Instruct-kosql-adapter", revision=adapter_revision)
```
### Prompt
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```
GENERAL_QUERY_PREFIX = """๋น์ ์ ์ฌ์ฉ์์ ์
๋ ฅ์ MySQL ์ฟผ๋ฆฌ๋ฌธ์ผ๋ก ๋ฐ๊พธ์ด์ฃผ๋ ์กฐ์ง์ ํ์์
๋๋ค.
๋น์ ์ ์๋ฌด๋ DB ์ด๋ฆ ๊ทธ๋ฆฌ๊ณ DB๋ด ํ
์ด๋ธ์ ๋ฉํ ์ ๋ณด๊ฐ ๋ด๊ธด ์๋์ (context)๋ฅผ ์ด์ฉํด์ ์ฃผ์ด์ง ์ง๋ฌธ(user_question)์ ๊ฑธ๋ง๋ MySQL ์ฟผ๋ฆฌ๋ฌธ์ ์์ฑํ๋ ๊ฒ์
๋๋ค.
(context)
{context}
"""
GENERATE_QUERY_INSTRUCTIONS = """
์ฃผ์ด์ง ์ง๋ฌธ(user_question)์ ๋ํด์ ๋ฌธ๋ฒ์ ์ผ๋ก ์ฌ๋ฐ๋ฅธ MySQL ์ฟผ๋ฆฌ๋ฌธ์ ์์ฑํด ์ฃผ์ธ์.
"""
```
### Example input
```
<|im_start|>system
๋น์ ์ ์ฌ์ฉ์์ ์
๋ ฅ์ MySQL ์ฟผ๋ฆฌ๋ฌธ์ผ๋ก ๋ฐ๊พธ์ด์ฃผ๋ ์กฐ์ง์ ํ์์
๋๋ค.
๋น์ ์ ์๋ฌด๋ DB ์ด๋ฆ ๊ทธ๋ฆฌ๊ณ DB๋ด ํ
์ด๋ธ์ ๋ฉํ ์ ๋ณด๊ฐ ๋ด๊ธด ์๋์ (context)๋ฅผ ์ด์ฉํด์ ์ฃผ์ด์ง ์ง๋ฌธ(user_question)์ ๊ฑธ๋ง๋ MySQL ์ฟผ๋ฆฌ๋ฌธ์ ์์ฑํ๋ ๊ฒ์
๋๋ค.
(context)
DB: movie_platform
table DDL: CREATE TABLE `movies` ( `movie_id` INTEGER `movie_title` TEXT `movie_release_year` INTEGER `movie_url` TEXT `movie_title_language` TEXT `movie_popularity` INTEGER `movie_image_url` TEXT `director_id` TEXT `director_name` TEXT `director_url` TEXT PRIMARY KEY (movie_id) FOREIGN KEY (user_id) REFERENCES `lists_users`(user_id) FOREIGN KEY (user_id) REFERENCES `lists_users`(user_id) FOREIGN KEY (user_id) REFERENCES `lists`(user_id) FOREIGN KEY (list_id) REFERENCES `lists`(list_id) FOREIGN KEY (user_id) REFERENCES `ratings_users`(user_id) FOREIGN KEY (user_id) REFERENCES `lists_users`(user_id) FOREIGN KEY (movie_id) REFERENCES `movies`(movie_id) );
์ฃผ์ด์ง ์ง๋ฌธ(user_question)์ ๋ํด์ ๋ฌธ๋ฒ์ ์ผ๋ก ์ฌ๋ฐ๋ฅธ MySQL ์ฟผ๋ฆฌ๋ฌธ์ ์์ฑํด ์ฃผ์ธ์.
<|im_end|>
<|im_start|>user
๊ฐ์ฅ ์ธ๊ธฐ ์๋ ์ํ๋ ๋ฌด์์ธ๊ฐ์? ๊ทธ ์ํ๋ ์ธ์ ๊ฐ๋ด๋์๊ณ ๋๊ฐ ๊ฐ๋
์ธ๊ฐ์?<|im_end|>
<|im_start|>assistant
```sql
SELECT movie_title, movie_release_year, director_name FROM movies ORDER BY movie_popularity DESC LIMIT 1 ;
```<|im_end|>
```
### Inference - pytorch
```
messages = [
{"role": "system", "content": GENERAL_QUERY_PREFIX.format(context=context) + GENERATE_QUERY_INSTRUCTIONS},
{"role": "user", "content": "user_question: "+ user_question}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
### Inference - LangChain & HuggingFacePipeline
```
bnb_config = get_bnb_config(bit=bit)
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
dtype=None,
quantization_config=bnb_config,
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=max_new_tokens)
hf_llm = HuggingFacePipeline(pipeline=pipe)
prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(
content=GENERAL_QUERY_PREFIX.format(context=context) + GENERATE_QUERY_INSTRUCTIONS
),
(
"human",
"์ง๋ฌธ(user_question): {user_question}",
),
]
)
chain = prompt | hf_llm
response = chain.invoke({"user_question" : user_question})
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
https://huggingface.co/datasets/100suping/ko-bird-sql-schema
- Naive translation of english quesiton to korean quesiton
https://huggingface.co/datasets/won75/text_to_sql_ko
- Generated data from 100 seed data
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
https://github.com/100suping/train_with_unsloth
### Preprocess Functions
```
def get_conversation_data(examples):
questions = examples['question']
schemas =examples['schema']
sql_queries =examples['SQL']
convos = []
for question, schema, sql in zip(questions, schemas, sql_queries):
conv = [
{"role": "system", "content": GENERAL_QUERY_PREFIX.format(context=schema) + GENERATE_QUERY_INSTRUCTIONS},
{"role": "user", "content": question},
{"role": "assistant", "content": "```sql\n"+sql+";\n```"}
]
convos.append(conv)
return {"conversation":convos,}
def formatting_prompts_func(examples):
convos = examples["conversation"]
texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
return { "text" : texts, }
```
#### Training Hyperparameters
- **Training regime:** bf16 mixed-precision
- **Load-in-8bit:** True
- **LoRA config:**
- r=16
- lora_alpha=32
- lora_dropout=0.0
- target_modules = "q proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj"
- bias = "none"
- use_gradient_checkpointing = "unsloth"
- use_rslora = False
- loftq_config = None
- **Training Data:** 100suping/ko-bird-sql-schema, won75/text_to_sql_ko
- **Max_seq_length:** 4096
- **Save_steps:** 50
- **Epochs:** 2
- **Global_steps:** 384
- **Batch_size:** 16
- **Gradient_accumulation_steps:** 2
- **Learning_rate:** 2e-4
- **Warmup_steps:** 20
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
- **Device:** G-NAHP-80 from EliceCloud(https://elice.io/ko/products/cloud/on-demand)
- A100 80GB PCle (However somehow if i use more than 60GB, error shows up)
- CPU 16 vCore
- Memory 192 GiB
- Storage 100 GiB
- **Memory-Used(GPU VRAM):** ~60GB
## For Continuous Instruction-tuning
To use this LoRA adapter, refer to the following code:
```
from peft import PeftModel
bnb_config = get_bnb_config(bit=bit)
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_name,
dtype=None,
quantization_config=bnb_config,
)
model = PeftModel.from_pretrained(model, adapter_path, is_trainable=True)
model = FastLanguageModel.patch_peft_model(model, use_gradient_checkpointing="unsloth")
model.print_trainable_parameters()
```
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
```
@article{hui2024qwen2,
title={Qwen2. 5-Coder Technical Report},
author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
journal={arXiv preprint arXiv:2409.12186},
year={2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
```
## Model Card Authors
joonavel[https://github.com/joonavel] from 100suping [https://github.com/100suping]
### Framework versions
- PEFT 0.13.2 |