--- license: apache-2.0 library_name: generic tags: - text2text-generation - punctuation - sentence-boundary-detection - truecasing - true-casing language: - af - am - ar - bg - bn - de - el - en - es - et - fa - fi - fr - gu - hi - hr - hu - id - is - it - ja - kk - kn - ko - ky - lt - lv - mk - ml - mr - nl - or - pa - pl - ps - pt - ro - ru - rw - so - sr - sw - ta - te - tr - uk - zh widget: - text: "hola amigo cómo estás es un día lluvioso hoy" - text: "please rsvp for the party asap preferably before 8 pm tonight" - text: "este modelo fue entrenado en un gpu a100 en realidad no se que dice esta frase lo traduje con nmt" - text: "此模型向文本添加标点符号它支持47种语言并在a100gpu上接受过训练它可以在每种语言上运行而无需每种语言的特殊路径" - text: "यह मॉडल 47 भाषाओं में विराम चिह्न जोड़ता है यह भाषा विशिष्ट पथ के बिना काम करता है यह प्रत्येक भाषा के लिए विशेष पथों के बिना प्रत्येक भाषा पर कार्य कर सकता है" --- # Model Overview This is an `xlm-roberta` fine-tuned to restore punctuation, true-case (capitalize), and detect sentence boundaries (full stops) in 47 languages. # Usage ## Usage via `punctuators` package The easiest way to use this model is to install [punctuators](https://github.com/1-800-BAD-CODE/punctuators): ```bash $ pip install punctuators ``` But this is just an ONNX and SentencePiece model, so you may run it as you wish. The input to the `punctuators` API is a list (batch) of strings. Each string will be punctuated, true-cased, and segmented on predicted full stops. The output will therefore be a list of list of strings: one list of segmented sentences per input text. To disable full stops, use `m.infer(texts, apply_sbd=False)`. The output will then be a list of strings: one punctuated, true-cased string per input text.
Example Usage ```python from typing import List from punctuators.models import PunctCapSegModelONNX m: PunctCapSegModelONNX = PunctCapSegModelONNX.from_pretrained( "1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase" ) input_texts: List[str] = [ "hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad", "hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in", "未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭", "በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል", "こんにちは友人" "調子はどう" "今日は雨の日でしたね" "乾いた状態を保つために一日中室内で過ごしました", "hallo freund wie geht's es war heute ein regnerischer tag nicht wahr ich verbrachte den tag drinnen um trocken zu bleiben", "हैलो दोस्त ये कैसा चल रहा है आज बारिश का दिन था न मैंने सूखा रहने के लिए दिन घर के अंदर बिताया", "كيف تجري الامور كان يومًا ممطرًا اليوم أليس كذلك قضيت اليوم في الداخل لأظل جافًا", ] results: List[List[str]] = m.infer( texts=input_texts, apply_sbd=True, ) for input_text, output_texts in zip(input_texts, results): print(f"Input: {input_text}") print(f"Outputs:") for text in output_texts: print(f"\t{text}") print() ```
Expected output ```text Input: hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad Outputs: Hola mundo, ¿cómo estás? Estamos bajo el sol y hace mucho calor. Santa Coloma abre los huertos urbanos a las escuelas de la ciudad. Input: hello friend how's it going it's snowing outside right now in connecticut a large storm is moving in Outputs: Hello friend, how's it going? It's snowing outside right now. In Connecticut, a large storm is moving in. Input: 未來疫苗將有望覆蓋3歲以上全年齡段美國與北約軍隊已全部撤離還有鐵路公路在內的各項基建的來源都將枯竭 Outputs: 未來,疫苗將有望覆蓋3歲以上全年齡段。 美國與北約軍隊已全部撤離。 還有,鐵路,公路在內的各項基建的來源都將枯竭。 Input: በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል Outputs: በባለፈው ሳምንት ኢትዮጵያ ከሶማሊያ 3 ሺህ ወታደሮቿንም እንዳስወጣች የሶማሊያው ዳልሳን ሬድዮ ዘግቦ ነበር። ጸጥታ ሃይሉና ህዝቡ ተቀናጅቶ በመስራቱ በመዲናዋ ላይ የታቀደው የጥፋት ሴራ ከሽፏል። Input: こんにちは友人調子はどう今日は雨の日でしたね乾いた状態を保つために一日中室内で過ごしました Outputs: こんにちは、友人、調子はどう? 今日は雨の日でしたね。 乾いた状態を保つために、一日中、室内で過ごしました。 Input: hallo freund wie geht's es war heute ein regnerischer tag nicht wahr ich verbrachte den tag drinnen um trocken zu bleiben Outputs: Hallo Freund, wie geht's? Es war heute ein regnerischer Tag, nicht wahr? Ich verbrachte den Tag drinnen, um trocken zu bleiben. Input: हैलो दोस्त ये कैसा चल रहा है आज बारिश का दिन था न मैंने सूखा रहने के लिए दिन घर के अंदर बिताया Outputs: हैलो दोस्त, ये कैसा चल रहा है? आज बारिश का दिन था न, मैंने सूखा रहने के लिए दिन घर के अंदर बिताया। Input: كيف تجري الامور كان يومًا ممطرًا اليوم أليس كذلك قضيت اليوم في الداخل لأظل جافًا Outputs: كيف تجري الامور؟ كان يومًا ممطرًا اليوم، أليس كذلك؟ قضيت اليوم في الداخل لأظل جافًا. ```
## Manual Usage If you want to use the ONNX and SP models without wrappers, see the following example.
Click to see manual usage ```python from typing import List import numpy as np import onnxruntime as ort from huggingface_hub import hf_hub_download from omegaconf import OmegaConf from sentencepiece import SentencePieceProcessor # Download the models from HF hub. Note: to clean up, you can find these files in your HF cache directory spe_path = hf_hub_download(repo_id="1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase", filename="sp.model") onnx_path = hf_hub_download(repo_id="1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase", filename="model.onnx") config_path = hf_hub_download( repo_id="1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase", filename="config.yaml" ) # Load the SP model tokenizer: SentencePieceProcessor = SentencePieceProcessor(spe_path) # noqa # Load the ONNX graph ort_session: ort.InferenceSession = ort.InferenceSession(onnx_path) # Load the model config with labels, etc. config = OmegaConf.load(config_path) # Potential classification labels before each subtoken pre_labels: List[str] = config.pre_labels # Potential classification labels after each subtoken post_labels: List[str] = config.post_labels # Special class that means "predict nothing" null_token = config.get("null_token", "") # Special class that means "all chars in this subtoken end with a period", e.g., "am" -> "a.m." acronym_token = config.get("acronym_token", "") # Not used in this example, but if your sequence exceed this value, you need to fold it over multiple inputs max_len = config.max_length # For reference only, graph has no language-specific behavior languages: List[str] = config.languages # Encode some input text, adding BOS + EOS input_text = "hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad" input_ids = [tokenizer.bos_id()] + tokenizer.EncodeAsIds(input_text) + [tokenizer.eos_id()] # Create a numpy array with shape [B, T], as the graph expects as input. # Note that we do not pass lengths to the graph; if you are using a batch, padding should be tokenizer.pad_id() and the # graph's attention mechanisms will ignore pad_id() without requiring explicit sequence lengths. input_ids_arr: np.array = np.array([input_ids]) # Run the graph, get outputs for all analytics pre_preds, post_preds, cap_preds, sbd_preds = ort_session.run(None, {"input_ids": input_ids_arr}) # Squeeze off the batch dimensions and convert to lists pre_preds = pre_preds[0].tolist() post_preds = post_preds[0].tolist() cap_preds = cap_preds[0].tolist() sbd_preds = sbd_preds[0].tolist() # Segmented sentences output_texts: List[str] = [] # Current sentence, which is built until we hit a sentence boundary prediction current_chars: List[str] = [] # Iterate over the outputs, ignoring the first (BOS) and final (EOS) predictions and tokens for token_idx in range(1, len(input_ids) - 1): token = tokenizer.IdToPiece(input_ids[token_idx]) # Simple SP decoding if token.startswith("▁") and current_chars: current_chars.append(" ") # Token-level predictions pre_label = pre_labels[pre_preds[token_idx]] post_label = post_labels[post_preds[token_idx]] # If we predict "pre-punct", insert it before this token if pre_label != null_token: current_chars.append(pre_label) # Iterate over each char. Skip SP's space token, char_start = 1 if token.startswith("▁") else 0 for token_char_idx, char in enumerate(token[char_start:], start=char_start): # If this char should be capitalized, apply upper case if cap_preds[token_idx][token_char_idx]: char = char.upper() # Append char current_chars.append(char) # if this is an acronym, add a period after every char (p.m., a.m., etc.) if post_label == acronym_token: current_chars.append(".") # Maybe this subtoken ends with punctuation if post_label != null_token and post_label != acronym_token: current_chars.append(post_label) # If this token is a sentence boundary, finalize the current sentence and reset if sbd_preds[token_idx]: output_texts.append("".join(current_chars)) current_chars.clear() # Maybe push final sentence, if the final token was not classified as a sentence boundary if current_chars: output_texts.append("".join(current_chars)) # Pretty print print(f"Input: {input_text}") print("Outputs:") for text in output_texts: print(f"\t{text}") ``` Expected output: ```text Input: hola mundo cómo estás estamos bajo el sol y hace mucho calor santa coloma abre los huertos urbanos a las escuelas de la ciudad Outputs: Hola mundo, ¿cómo estás? Estamos bajo el sol y hace mucho calor. Santa Coloma abre los huertos urbanos a las escuelas de la ciudad. ```
  # Model Architecture This model implements the following graph, which allows punctuation, true-casing, and fullstop prediction in every language without language-specific behavior: ![graph.png](https://s3.amazonaws.com/moonup/production/uploads/62d34c813eebd640a4f97587/jpr-pMdv6iHxnjbN4QNt0.png) We start by tokenizing the text and encoding it with XLM-Roberta, which is the pre-trained portion of this graph. Then we predict punctuation before and after every subtoken. Predicting before each token allows for Spanish inverted question marks. Predicting after every token allows for all other punctuation, including punctuation within continuous-script languages and acronyms. We use embeddings to represent the predicted punctuation tokens to inform the sentence boundary head of the punctuation that'll be inserted into the text. This allows proper full stop prediction, since certain punctuation tokens (periods, questions marks, etc.) are strongly correlated with sentence boundaries. We then shift full stop predictions to the right by one, to inform the true-casing head of where the beginning of each new sentence is. This is important since true-casing is strongly correlated to sentence boundaries. For true-casing, we predict `N` predictions per subtoken, where `N` is the number of characters in the subtoken. In practice, `N` is the maximum subtoken length and extra predictions are ignored. Essentially, true-casing is modeled as a multi-label problem. This allows for upper-casing arbitrary characters, e.g., "NATO", "MacDonald", "mRNA", etc. Applying all these predictions to the input text, we can punctuate, true-case, and split sentences in any language. ## Tokenizer Instead of the hacky wrapper used by FairSeq and strangely ported (not fixed) by HuggingFace, the `xlm-roberta` SentencePiece model was adjusted to correctly encode the text. Per HF's comments, ```python # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' ``` The SP model was un-hacked with the following snippet (SentencePiece experts, let me know if there is a problem here): ```python from sentencepiece import SentencePieceProcessor from sentencepiece.sentencepiece_model_pb2 import ModelProto m = ModelProto() m.ParseFromString(open("/path/to/xlmroberta/sentencepiece.bpe.model", "rb").read()) pieces = list(m.pieces) pieces = ( [ ModelProto.SentencePiece(piece="", type=ModelProto.SentencePiece.Type.CONTROL), ModelProto.SentencePiece(piece="", type=ModelProto.SentencePiece.Type.CONTROL), ModelProto.SentencePiece(piece="", type=ModelProto.SentencePiece.Type.CONTROL), ModelProto.SentencePiece(piece="", type=ModelProto.SentencePiece.Type.UNKNOWN), ] + pieces[3:] + [ModelProto.SentencePiece(piece="", type=ModelProto.SentencePiece.Type.USER_DEFINED)] ) del m.pieces[:] m.pieces.extend(pieces) with open("/path/to/new/sp.model", "wb") as f: f.write(m.SerializeToString()) ``` Now we can use just the SP model without a wrapper. ## Post-Punctuation Tokens This model predicts the following set of punctuation tokens after each subtoken: | Token | Description | Relevant Languages | | ---: | :---------- | :----------- | | \ | No punctuation | All | | \ | Every character in this subword is followed by a period | Primarily English, some European | | . | Latin full stop | Many | | , | Latin comma | Many | | ? | Latin question mark | Many | | ? | Full-width question mark | Chinese, Japanese | | , | Full-width comma | Chinese, Japanese | | 。 | Full-width full stop | Chinese, Japanese | | 、 | Ideographic comma | Chinese, Japanese | | ・ | Middle dot | Japanese | | । | Danda | Hindi, Bengali, Oriya | | ؟ | Arabic question mark | Arabic | | ; | Greek question mark | Greek | | ። | Ethiopic full stop | Amharic | | ፣ | Ethiopic comma | Amharic | | ፧ | Ethiopic question mark | Amharic | ## Pre-Punctuation Tokens This model predicts the following set of punctuation tokens before each subword: | Token | Description | Relevant Languages | | ---: | :---------- | :----------- | | \ | No punctuation | All | | ¿ | Inverted question mark | Spanish | # Training Details This model was trained in the NeMo framework on an A100 for approximately 7 hours. You may view the `tensorboard` log on [tensorboard.dev](https://tensorboard.dev/experiment/xxnULI1aTeK37vUDL4ejiw/#scalars). This model was trained with News Crawl data from WMT. 1M lines of text for each language was used, except for a few low-resource languages which may have used less. Languages were chosen based on whether the News Crawl corpus contained enough reliable-quality data as judged by the author. # Limitations This model was trained on news data, and may not perform well on conversational or informal data. This model is unlikely to be of production quality. It was trained with "only" 1M lines per language, and the dev sets may have been noisy due to the nature of web-scraped news data. This model over-predicts Spanish question marks, especially the inverted question mark `¿` (see metrics below). Since `¿` is a rare token, especially in the context of a 47-language model, Spanish questions were over-sampled by selecting more of these sentences from additional training data that was not used. However, this seems to have "over-corrected" the problem and a lot of Spanish question marks are predicted. The model may also over-predict commas. If you find any general limitations not mentioned here, let me know so all limitations can be addressed in the next fine-tuning. # Evaluation In these metrics, keep in mind that 1. The data is noisy 2. Sentence boundaries and true-casing are conditioned on predicted punctuation, which is the most difficult task and sometimes incorrect. When conditioning on reference punctuation, true-casing and SBD is practically 100% for most languages. 4. Punctuation can be subjective. E.g., `Hola mundo, ¿cómo estás?` or `Hola mundo. ¿Cómo estás?` When the sentences are longer and more practical, these ambiguities abound and affect all 3 analytics. ## Test Data and Example Generation Each test example was generated using the following procedure: 1. Concatenate 11 random sentences (1 + 10 for each sentence in the test set) 2. Lower-case the concatenated sentence 3. Remove all punctuation Targets are generated as we lower-case letters and remove punctuation. The data is a held-out portion of News Crawl, which has been deduplicated. 3,000 lines of data per language was used, generating 3,000 unique examples of 11 sentences each. We generate 3,000 examples, where example `i` begins with sentence `i` and is followed by 10 random sentences selected from the 3,000 sentence test set. For measuring true-casing and sentence boundary detection, reference punctuation tokens were used for conditioning (see graph above). If we use predicted punctuation instead, then incorrect punctuation will result in true-casing and SBD targets not aligning correctly and these metrics will be artificially low. ## Selected Language Evaluation Reports For now, metrics for a few selected languages are shown below. Given the amount of work required to collect and pretty-print metrics in 47 languages, I'll add more eventually. Expand any of the following tabs to see metrics for that language.
English ```text punct_post test report: label precision recall f1 support (label_id: 0) 99.25 98.43 98.84 564908 (label_id: 1) 63.14 84.67 72.33 613 . (label_id: 2) 90.97 93.91 92.42 32040 , (label_id: 3) 73.95 84.32 78.79 24271 ? (label_id: 4) 79.05 81.94 80.47 1041 ? (label_id: 5) 0.00 0.00 0.00 0 , (label_id: 6) 0.00 0.00 0.00 0 。 (label_id: 7) 0.00 0.00 0.00 0 、 (label_id: 8) 0.00 0.00 0.00 0 ・ (label_id: 9) 0.00 0.00 0.00 0 । (label_id: 10) 0.00 0.00 0.00 0 ؟ (label_id: 11) 0.00 0.00 0.00 0 ، (label_id: 12) 0.00 0.00 0.00 0 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 0.00 0.00 0.00 0 ፣ (label_id: 15) 0.00 0.00 0.00 0 ፧ (label_id: 16) 0.00 0.00 0.00 0 ------------------- micro avg 97.60 97.60 97.60 622873 macro avg 81.27 88.65 84.57 622873 weighted avg 97.77 97.60 97.67 622873 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 99.72 99.85 99.78 2134956 UPPER (label_id: 1) 96.33 93.52 94.91 91996 ------------------- micro avg 99.59 99.59 99.59 2226952 macro avg 98.03 96.68 97.34 2226952 weighted avg 99.58 99.59 99.58 2226952 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 99.99 99.98 99.99 591540 FULLSTOP (label_id: 1) 99.61 99.89 99.75 34333 ------------------- micro avg 99.97 99.97 99.97 625873 macro avg 99.80 99.93 99.87 625873 weighted avg 99.97 99.97 99.97 625873 ```
Spanish ```text punct_pre test report: label precision recall f1 support (label_id: 0) 99.94 99.89 99.92 636941 ¿ (label_id: 1) 56.73 71.35 63.20 1288 ------------------- micro avg 99.83 99.83 99.83 638229 macro avg 78.34 85.62 81.56 638229 weighted avg 99.85 99.83 99.84 638229 ``` ``` punct_post test report: label precision recall f1 support (label_id: 0) 99.19 98.41 98.80 578271 (label_id: 1) 30.10 56.36 39.24 55 . (label_id: 2) 91.92 93.12 92.52 30856 , (label_id: 3) 72.98 82.44 77.42 27761 ? (label_id: 4) 52.77 71.85 60.85 1286 ? (label_id: 5) 0.00 0.00 0.00 0 , (label_id: 6) 0.00 0.00 0.00 0 。 (label_id: 7) 0.00 0.00 0.00 0 、 (label_id: 8) 0.00 0.00 0.00 0 ・ (label_id: 9) 0.00 0.00 0.00 0 । (label_id: 10) 0.00 0.00 0.00 0 ؟ (label_id: 11) 0.00 0.00 0.00 0 ، (label_id: 12) 0.00 0.00 0.00 0 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 0.00 0.00 0.00 0 ፣ (label_id: 15) 0.00 0.00 0.00 0 ፧ (label_id: 16) 0.00 0.00 0.00 0 ------------------- micro avg 97.40 97.40 97.40 638229 macro avg 69.39 80.44 73.77 638229 weighted avg 97.60 97.40 97.48 638229 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 99.82 99.86 99.84 2324724 UPPER (label_id: 1) 95.92 94.70 95.30 79266 ------------------- micro avg 99.69 99.69 99.69 2403990 macro avg 97.87 97.28 97.57 2403990 weighted avg 99.69 99.69 99.69 2403990 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 99.99 99.96 99.98 607057 FULLSTOP (label_id: 1) 99.31 99.88 99.60 34172 ------------------- micro avg 99.96 99.96 99.96 641229 macro avg 99.65 99.92 99.79 641229 weighted avg 99.96 99.96 99.96 641229 ```
Amharic ```text punct_post test report: label precision recall f1 support (label_id: 0) 99.83 99.28 99.56 729664 (label_id: 1) 0.00 0.00 0.00 0 . (label_id: 2) 0.00 0.00 0.00 0 , (label_id: 3) 0.00 0.00 0.00 0 ? (label_id: 4) 0.00 0.00 0.00 0 ? (label_id: 5) 0.00 0.00 0.00 0 , (label_id: 6) 0.00 0.00 0.00 0 。 (label_id: 7) 0.00 0.00 0.00 0 、 (label_id: 8) 0.00 0.00 0.00 0 ・ (label_id: 9) 0.00 0.00 0.00 0 । (label_id: 10) 0.00 0.00 0.00 0 ؟ (label_id: 11) 0.00 0.00 0.00 0 ، (label_id: 12) 0.00 0.00 0.00 0 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 91.27 97.90 94.47 25341 ፣ (label_id: 15) 61.93 82.11 70.60 5818 ፧ (label_id: 16) 67.41 81.73 73.89 1177 ------------------- micro avg 99.08 99.08 99.08 762000 macro avg 80.11 90.26 84.63 762000 weighted avg 99.21 99.08 99.13 762000 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 98.40 98.03 98.21 1064 UPPER (label_id: 1) 71.23 75.36 73.24 69 ------------------- micro avg 96.65 96.65 96.65 1133 macro avg 84.81 86.69 85.73 1133 weighted avg 96.74 96.65 96.69 1133 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 99.99 99.85 99.92 743158 FULLSTOP (label_id: 1) 95.20 99.62 97.36 21842 ------------------- micro avg 99.85 99.85 99.85 765000 macro avg 97.59 99.74 98.64 765000 weighted avg 99.85 99.85 99.85 765000 ```
Chinese ```text punct_post test report: label precision recall f1 support (label_id: 0) 99.53 97.31 98.41 435611 (label_id: 1) 0.00 0.00 0.00 0 . (label_id: 2) 0.00 0.00 0.00 0 , (label_id: 3) 0.00 0.00 0.00 0 ? (label_id: 4) 0.00 0.00 0.00 0 ? (label_id: 5) 81.85 87.31 84.49 1513 , (label_id: 6) 74.08 93.67 82.73 35921 。 (label_id: 7) 96.51 96.93 96.72 32097 、 (label_id: 8) 0.00 0.00 0.00 0 ・ (label_id: 9) 0.00 0.00 0.00 0 । (label_id: 10) 0.00 0.00 0.00 0 ؟ (label_id: 11) 0.00 0.00 0.00 0 ، (label_id: 12) 0.00 0.00 0.00 0 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 0.00 0.00 0.00 0 ፣ (label_id: 15) 0.00 0.00 0.00 0 ፧ (label_id: 16) 0.00 0.00 0.00 0 ------------------- micro avg 97.00 97.00 97.00 505142 macro avg 87.99 93.81 90.59 505142 weighted avg 97.48 97.00 97.15 505142 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 94.89 94.98 94.94 2951 UPPER (label_id: 1) 81.34 81.03 81.18 796 ------------------- micro avg 92.02 92.02 92.02 3747 macro avg 88.11 88.01 88.06 3747 weighted avg 92.01 92.02 92.01 3747 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 99.99 99.97 99.98 473642 FULLSTOP (label_id: 1) 99.55 99.90 99.72 34500 ------------------- micro avg 99.96 99.96 99.96 508142 macro avg 99.77 99.93 99.85 508142 weighted avg 99.96 99.96 99.96 508142 ```
Japanese ```text punct_post test report: label precision recall f1 support (label_id: 0) 99.34 95.90 97.59 406341 (label_id: 1) 0.00 0.00 0.00 0 . (label_id: 2) 0.00 0.00 0.00 0 , (label_id: 3) 0.00 0.00 0.00 0 ? (label_id: 4) 0.00 0.00 0.00 0 ? (label_id: 5) 70.55 73.56 72.02 1456 , (label_id: 6) 0.00 0.00 0.00 0 。 (label_id: 7) 94.38 96.95 95.65 32537 、 (label_id: 8) 54.28 87.62 67.03 18610 ・ (label_id: 9) 28.18 71.64 40.45 1100 । (label_id: 10) 0.00 0.00 0.00 0 ؟ (label_id: 11) 0.00 0.00 0.00 0 ، (label_id: 12) 0.00 0.00 0.00 0 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 0.00 0.00 0.00 0 ፣ (label_id: 15) 0.00 0.00 0.00 0 ፧ (label_id: 16) 0.00 0.00 0.00 0 ------------------- micro avg 95.51 95.51 95.51 460044 macro avg 69.35 85.13 74.55 460044 weighted avg 96.91 95.51 96.00 460044 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 92.33 94.03 93.18 4174 UPPER (label_id: 1) 83.51 79.46 81.43 1587 ------------------- micro avg 90.02 90.02 90.02 5761 macro avg 87.92 86.75 87.30 5761 weighted avg 89.90 90.02 89.94 5761 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 99.99 99.92 99.96 428544 FULLSTOP (label_id: 1) 99.07 99.87 99.47 34500 ------------------- micro avg 99.92 99.92 99.92 463044 macro avg 99.53 99.90 99.71 463044 weighted avg 99.92 99.92 99.92 463044 ```
Hindi ```text punct_post test report: label precision recall f1 support (label_id: 0) 99.75 99.44 99.59 560358 (label_id: 1) 0.00 0.00 0.00 0 . (label_id: 2) 0.00 0.00 0.00 0 , (label_id: 3) 69.55 78.48 73.75 8084 ? (label_id: 4) 63.30 87.07 73.31 317 ? (label_id: 5) 0.00 0.00 0.00 0 , (label_id: 6) 0.00 0.00 0.00 0 。 (label_id: 7) 0.00 0.00 0.00 0 、 (label_id: 8) 0.00 0.00 0.00 0 ・ (label_id: 9) 0.00 0.00 0.00 0 । (label_id: 10) 96.92 98.66 97.78 32118 ؟ (label_id: 11) 0.00 0.00 0.00 0 ، (label_id: 12) 0.00 0.00 0.00 0 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 0.00 0.00 0.00 0 ፣ (label_id: 15) 0.00 0.00 0.00 0 ፧ (label_id: 16) 0.00 0.00 0.00 0 ------------------- micro avg 99.11 99.11 99.11 600877 macro avg 82.38 90.91 86.11 600877 weighted avg 99.17 99.11 99.13 600877 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 97.19 96.72 96.95 2466 UPPER (label_id: 1) 89.14 90.60 89.86 734 ------------------- micro avg 95.31 95.31 95.31 3200 macro avg 93.17 93.66 93.41 3200 weighted avg 95.34 95.31 95.33 3200 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 100.00 99.99 99.99 569472 FULLSTOP (label_id: 1) 99.82 99.99 99.91 34405 ------------------- micro avg 99.99 99.99 99.99 603877 macro avg 99.91 99.99 99.95 603877 weighted avg 99.99 99.99 99.99 603877 ```
Arabic ```text punct_post test report: label precision recall f1 support (label_id: 0) 99.30 96.94 98.10 688043 (label_id: 1) 93.33 77.78 84.85 18 . (label_id: 2) 93.31 93.78 93.54 28175 , (label_id: 3) 0.00 0.00 0.00 0 ? (label_id: 4) 0.00 0.00 0.00 0 ? (label_id: 5) 0.00 0.00 0.00 0 , (label_id: 6) 0.00 0.00 0.00 0 。 (label_id: 7) 0.00 0.00 0.00 0 、 (label_id: 8) 0.00 0.00 0.00 0 ・ (label_id: 9) 0.00 0.00 0.00 0 । (label_id: 10) 0.00 0.00 0.00 0 ؟ (label_id: 11) 65.93 82.79 73.40 860 ، (label_id: 12) 44.89 79.20 57.30 20941 ; (label_id: 13) 0.00 0.00 0.00 0 ። (label_id: 14) 0.00 0.00 0.00 0 ፣ (label_id: 15) 0.00 0.00 0.00 0 ፧ (label_id: 16) 0.00 0.00 0.00 0 ------------------- micro avg 96.29 96.29 96.29 738037 macro avg 79.35 86.10 81.44 738037 weighted avg 97.49 96.29 96.74 738037 ``` ``` cap test report: label precision recall f1 support LOWER (label_id: 0) 97.10 99.49 98.28 4137 UPPER (label_id: 1) 98.71 92.89 95.71 1729 ------------------- micro avg 97.55 97.55 97.55 5866 macro avg 97.90 96.19 96.99 5866 weighted avg 97.57 97.55 97.52 5866 ``` ``` seg test report: label precision recall f1 support NOSTOP (label_id: 0) 99.99 99.97 99.98 710456 FULLSTOP (label_id: 1) 99.39 99.85 99.62 30581 ------------------- micro avg 99.97 99.97 99.97 741037 macro avg 99.69 99.91 99.80 741037 weighted avg 99.97 99.97 99.97 741037 ```
  # Extra Stuff ## Acronyms, abbreviations, and bi-capitalized words This section briefly demonstrates the models behavior when presented with the following: 1. Acronyms: "NATO" 2. Fake acronyms: "NHTG" in place of "NATO" 3. Ambigous term which could be an acronym or proper noun: "Tuny" 3. Bi-capitalized words: "McDavid" 4. Intialisms: "p.m."
Acronyms, etc. inputs ```python from typing import List from punctuators.models import PunctCapSegModelONNX m: PunctCapSegModelONNX = PunctCapSegModelONNX.from_pretrained( "1-800-BAD-CODE/xlm-roberta_punctuation_fullstop_truecase" ) input_texts = [ "the us is a nato member as a nato member the country enjoys security guarantees notably article 5", "the us is a nhtg member as a nhtg member the country enjoys security guarantees notably article 5", "the us is a tuny member as a tuny member the country enjoys security guarantees notably article 5", "connor andrew mcdavid is a canadian professional ice hockey centre and captain of the edmonton oilers of the national hockey league the oilers selected him first overall in the 2015 nhl entry draft mcdavid spent his childhood playing ice hockey against older children", "please rsvp for the party asap preferably before 8 pm tonight", ] results: List[List[str]] = m.infer( texts=input_texts, apply_sbd=True, ) for input_text, output_texts in zip(input_texts, results): print(f"Input: {input_text}") print(f"Outputs:") for text in output_texts: print(f"\t{text}") print() ```
Expected output ```text Input: the us is a nato member as a nato member the country enjoys security guarantees notably article 5 Outputs: The U.S. is a NATO member. As a NATO member, the country enjoys security guarantees, notably Article 5. Input: the us is a nhtg member as a nhtg member the country enjoys security guarantees notably article 5 Outputs: The U.S. is a NHTG member. As a NHTG member, the country enjoys security guarantees, notably Article 5. Input: the us is a tuny member as a tuny member the country enjoys security guarantees notably article 5 Outputs: The U.S. is a Tuny member. As a Tuny member, the country enjoys security guarantees, notably Article 5. Input: connor andrew mcdavid is a canadian professional ice hockey centre and captain of the edmonton oilers of the national hockey league the oilers selected him first overall in the 2015 nhl entry draft mcdavid spent his childhood playing ice hockey against older children Outputs: Connor Andrew McDavid is a Canadian professional ice hockey centre and captain of the Edmonton Oilers of the National Hockey League. The Oilers selected him first overall in the 2015 NHL entry draft. McDavid spent his childhood playing ice hockey against older children. Input: please rsvp for the party asap preferably before 8 pm tonight Outputs: Please RSVP for the party ASAP, preferably before 8 p.m. tonight. ```