0xid commited on
Commit
1acc479
·
1 Parent(s): f623c8a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1362.81 +/- 56.53
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb817a58647b1ee75a5595473121cc50d7b9770bf316b55aa170983ea1ebe7d
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e559c9b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e559c9c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e559c9ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e559c9d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9e559c9dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9e559c9e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9e559c9ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e559c9f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9e559ce040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e559ce0d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e559ce160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e559ce1f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9e559c0f00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675510678992993628,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOKBbT4oGXs+UgYLP7Spkz8Mgas94f6qvxD/+D5wh0M+3sisP+pP67tY6aE+ncwHPx4jj75kjfq/zEUKv/kmhr9WRpy+nRirvnnfkD2sJOk/WnUCP9surT58qXm/px8GwGC1NT9cdrA+wrsKP6+tgb83Rs4+qopqvqTR2z67F4o//8dpv/fLIz83dg2/vOpEv5SzYz+oCz8/vfhKPkWhFz5b80W/bWyUP5BH2T7t8Dc/WD8MP7NUn77VGeO+ZJpjP7A1tT6l9sY9tqh9v3uNQj5gtTU/XHawPsK7Cj+vrYG/fWeKv35tPTwO4AE/lqg8vyCZtj/Lyx0+U/fKPf5Cnj0jVi+/naeJPhyDgr45gZE+zOjCPtupLz/JryM/fMwPPvLDOj+F2dU9SUL9PuVNjD6UjEM/gWGgPSeTQb5wF7o8MVW0v1x2sD7Cuwo/wa98Pw0HoD6O7pm+uaPLPn28Fz1QlS2/3V4jPnueqD/XWQq/T2+qP+m29T7w3Zg/KV7ZvZPmNj9z8Yq/a7e6vlrqzL9igTE/cNtYPfUVPz9DX348uUSkP1MpfD/g5Ry/PZkzwGC1NT9cdrA+wrsKP6+tgb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAwXl82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJhlbPAAAAAAtyty/AAAAAPMkHrwAAAAAMePtPwAAAAB6Bfw9AAAAACKq3D8AAAAAEO9SvQAAAAA9TwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1X23NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL5PR70AAAAAAlkAwAAAAADW33o9AAAAAHTY+z8AAAAAd7ESvQAAAADXMPk/AAAAAJnXmTwAAAAAFdLvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3mwLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAd/gg+AAAAAKAX3L8AAAAAPksVvQAAAADGvvM/AAAAAARrEL4AAAAA3BTsPwAAAAAkXYa9AAAAAKKC2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG7Yu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2nfuvQAAAAA/kOC/AAAAABsItL0AAAAAtKDkPwAAAABFywW+AAAAAHsj3D8AAAAAyiaaPQAAAADUx/6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMsBpTMqz+MAWyUTegDjAF0lEdArCmF/jKgZnV9lChoBkdAlMTrP6be/GgHTegDaAhHQKwqj/XGwRp1fZQoaAZHQJL2Ho8p1A9oB03oA2gIR0CsLA62v0ROdX2UKGgGR0CUecGI9C/oaAdN6ANoCEdArC3tGViWmnV9lChoBkdAkZu/07KaHGgHTegDaAhHQKw2GXAM2FZ1fZQoaAZHQJVbh95Qgs9oB03oA2gIR0CsNzkRBeHBdX2UKGgGR0CUp/495hScaAdN6ANoCEdArDi9pj+aSnV9lChoBkdAlphavV3EAGgHTegDaAhHQKw6hPXTVlR1fZQoaAZHQJO1uNfgJkZoB03oA2gIR0CsRjeC9RJmdX2UKGgGR0CVvhYQarFPaAdN6ANoCEdArEfupn6EanV9lChoBkdAlU12W+oLomgHTegDaAhHQKxJjcXWOIZ1fZQoaAZHQJG+u07bL2ZoB03oA2gIR0CsS2Q8fV7QdX2UKGgGR0CTeyEDhcZ+aAdN6ANoCEdArFOUOoYNzHV9lChoBkdAh9I1ZLZi/mgHTegDaAhHQKxUqZssQNF1fZQoaAZHQJEEmUNayKNoB03oA2gIR0CsVjjdP+GXdX2UKGgGR0CRWIJb+tKaaAdN6ANoCEdArFf0ojOcD3V9lChoBkdAifO11W8yvmgHTegDaAhHQKxiIGYa5wx1fZQoaAZHQJPrdlxwQ19oB03oA2gIR0CsY/FxffGddX2UKGgGR0CVuRQpWmxdaAdN6ANoCEdArGaGYUnG83V9lChoBkdAkMfcMNMGo2gHTegDaAhHQKxo+Tyrgfl1fZQoaAZHQJYOqcFyJbdoB03oA2gIR0CscULlV94NdX2UKGgGR0CVsaFGXokiaAdN6ANoCEdArHJDRnezlnV9lChoBkdAlZl6y4Wk8GgHTegDaAhHQKxztxXGOuJ1fZQoaAZHQJX0FaA4GUxoB03oA2gIR0CsdXGsNlRQdX2UKGgGR0CVVX0cwQDnaAdN6ANoCEdArH5zwc5sCXV9lChoBkdAlQW9bC79RGgHTegDaAhHQKyAA24NI9V1fZQoaAZHQJRSYBnzxw1oB03oA2gIR0CsgmI8hcJMdX2UKGgGR0CQiXthd+ocaAdN6ANoCEdArIVOuq3mWHV9lChoBkdAlAWLbUPQOWgHTegDaAhHQKyOgLehwl11fZQoaAZHQJLTNwPy08hoB03oA2gIR0Csj5WQnx8VdX2UKGgGR0CU7EDEm6XjaAdN6ANoCEdArJEdrl/6PHV9lChoBkdAlFsIfOlfq2gHTegDaAhHQKyS4R9PUKB1fZQoaAZHQJVcKDwpe/poB03oA2gIR0CsmvFrM1TBdX2UKGgGR0CUkO59mYjTaAdN6ANoCEdArJw9zuF6A3V9lChoBkdAlA1djXnQpmgHTegDaAhHQKyedUm2LHd1fZQoaAZHQJQlj+IdlupoB03oA2gIR0CsoSZG8VYZdX2UKGgGR0CRIxUi6g/UaAdN6ANoCEdArKvX0wrUb3V9lChoBkdAkE/PSMLncWgHTegDaAhHQKys6sHSncd1fZQoaAZHQJIjpxBE8aJoB03oA2gIR0CsrmbN0NjLdX2UKGgGR0CCRTDYRNAUaAdN6ANoCEdArLAmRxLkCHV9lChoBkdAlM2vqcEvCmgHTegDaAhHQKy4T0HyEtd1fZQoaAZHQJUNTI3irDJoB03oA2gIR0CsuW/XoTwldX2UKGgGR0CQL1iILw4LaAdN6ANoCEdArLsK9M9KVnV9lChoBkdAiaelt8/lhmgHTegDaAhHQKy9kzVtoBd1fZQoaAZHQJW2m0tyxRloB03oA2gIR0CszK4iX6ZZdX2UKGgGR0CUapBEa2nbaAdN6ANoCEdArM5zExZdOnV9lChoBkdAk+5ERnOB2GgHTegDaAhHQKzQQImgJ1J1fZQoaAZHQJP8uAkLQX1oB03oA2gIR0Cs0gAJLM9sdX2UKGgGR0CT3fxVyWAxaAdN6ANoCEdArNo8iwB5o3V9lChoBkdAlFUzzd1uBWgHTegDaAhHQKzbQ4z7/GV1fZQoaAZHQJLHYsbvPTpoB03oA2gIR0Cs3Pj6Fds0dX2UKGgGR0CWwtD0UXYUaAdN6ANoCEdArN+ds+FDfHV9lChoBkdAjlNr5RCQcWgHTegDaAhHQKzrBZowmE51fZQoaAZHQJS3ZP69CeFoB03oA2gIR0Cs7AmPxQSBdX2UKGgGR0CWR9P4EfT1aAdN6ANoCEdArO2GO4oZynV9lChoBkdAlas0K7ZnMGgHTegDaAhHQKzvUtJ4B3l1fZQoaAZHQJDZ2wA2hqVoB03oA2gIR0Cs96bpV0cPdX2UKGgGR0CTeB0/4ZdfaAdN6ANoCEdArPi/A0sOG3V9lChoBkdAlWKctTUAk2gHTegDaAhHQKz6OBikO7R1fZQoaAZHQIl6LsSkCV9oB03oA2gIR0Cs/Byon8badX2UKGgGR0CKwuYgJTl1aAdN6ANoCEdArQihaTwDvHV9lChoBkdAjuh3AM2FWWgHTegDaAhHQK0JtyYoiLV1fZQoaAZHQI9gFM7EHdJoB03oA2gIR0CtCzo2wV0tdX2UKGgGR0CVqqqhUR4AaAdN6ANoCEdArQzyvV3EAHV9lChoBkdAlFGe8Gs3hmgHTegDaAhHQK0VFqqOtGN1fZQoaAZHQJGQcte2NNtoB03oA2gIR0CtFjmTcIqtdX2UKGgGR0CRRmeEqUeNaAdN6ANoCEdArRe7eEZiu3V9lChoBkdAkBk08A7xNWgHTegDaAhHQK0ZdtJFspJ1fZQoaAZHQJHBrMV1wHZoB03oA2gIR0CtJQMLncL0dX2UKGgGR0CQ/HM8YAKfaAdN6ANoCEdArSa2XgLqlnV9lChoBkdAkmfGeYlY2mgHTegDaAhHQK0oVJ8v25B1fZQoaAZHQJKA8n3L3bpoB03oA2gIR0CtKhi6g/TtdX2UKGgGR0CU+lBkZrHmaAdN6ANoCEdArTI2TcIqsnV9lChoBkdAlUauG47Rv2gHTegDaAhHQK0zSIDYAbR1fZQoaAZHQJMmDh60IC5oB03oA2gIR0CtNMNUfgaWdX2UKGgGR0CRp45uIhyKaAdN6ANoCEdArTZ7dFfAsXV9lChoBkdAlTQVHjIaLmgHTegDaAhHQK1AW2Yv38J1fZQoaAZHQJLDeUVzp5hoB03oA2gIR0CtQhVXmvGIdX2UKGgGR0CUjaois4kvaAdN6ANoCEdArUSBt1p0wXV9lChoBkdAk+r9BnjABWgHTegDaAhHQK1HKFi8Wbh1fZQoaAZHQJQ67sVtXPtoB03oA2gIR0CtT07TDwYtdX2UKGgGR0CSRryBClabaAdN6ANoCEdArVBbwrlNlHV9lChoBkdAlGVgZGax5mgHTegDaAhHQK1R9P3ztkZ1fZQoaAZHQIzKWavzOHFoB03oA2gIR0CtU9ERJ2+xdX2UKGgGR0CUqI/xlQMyaAdN6ANoCEdArVy88DB/JHV9lChoBkdAk1wVr6+FlGgHTegDaAhHQK1eWKGcnVp1fZQoaAZHQJYmcIHC4z9oB03oA2gIR0CtYKzIeYD1dX2UKGgGR0CPve94/u9faAdN6ANoCEdArWOCyyD7InV9lChoBkdAlWya8tf5UWgHTegDaAhHQK1soSDh99d1fZQoaAZHQJZF0WHk92ZoB03oA2gIR0CtbbnxjJ+2dX2UKGgGR0CVYGSi/O+qaAdN6ANoCEdArW9S6vq1PXV9lChoBkdAkjrA2qDK5mgHTegDaAhHQK1xEnb7CSB1fZQoaAZHQJY8flq8DjloB03oA2gIR0CtePqQJXyRdX2UKGgGR0CTsO2gWac7aAdN6ANoCEdArXoB7b+LnHV9lChoBkdAlcyFx4ptrWgHTegDaAhHQK18QFj/dZd1fZQoaAZHQJYvrNxEORVoB03oA2gIR0CtfuSSNfgKdX2UKGgGR0CVXs6BAfMfaAdN6ANoCEdArYm4bOu7pXV9lChoBkdAlJ8KVD8cdmgHTegDaAhHQK2Kyvnr6cl1fZQoaAZHQJTfWd7OVxFoB03oA2gIR0CtjFA9Net0dX2UKGgGR0CUgHg2606YaAdN6ANoCEdArY4QTAWSEHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11f7b70a9f466afc9fa06f3231e46311c8edfd7432396164ed4b30c2f1abea1e
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:485c7787cde3cb6fabc197c2451ed95377cd8675a6a03dc1a11e7bad51a8b82d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e559c9b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e559c9c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e559c9ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e559c9d30>", "_build": "<function ActorCriticPolicy._build at 0x7f9e559c9dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e559c9e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9e559c9ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e559c9f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e559ce040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e559ce0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e559ce160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e559ce1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9e559c0f00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675510678992993628, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOKBbT4oGXs+UgYLP7Spkz8Mgas94f6qvxD/+D5wh0M+3sisP+pP67tY6aE+ncwHPx4jj75kjfq/zEUKv/kmhr9WRpy+nRirvnnfkD2sJOk/WnUCP9surT58qXm/px8GwGC1NT9cdrA+wrsKP6+tgb83Rs4+qopqvqTR2z67F4o//8dpv/fLIz83dg2/vOpEv5SzYz+oCz8/vfhKPkWhFz5b80W/bWyUP5BH2T7t8Dc/WD8MP7NUn77VGeO+ZJpjP7A1tT6l9sY9tqh9v3uNQj5gtTU/XHawPsK7Cj+vrYG/fWeKv35tPTwO4AE/lqg8vyCZtj/Lyx0+U/fKPf5Cnj0jVi+/naeJPhyDgr45gZE+zOjCPtupLz/JryM/fMwPPvLDOj+F2dU9SUL9PuVNjD6UjEM/gWGgPSeTQb5wF7o8MVW0v1x2sD7Cuwo/wa98Pw0HoD6O7pm+uaPLPn28Fz1QlS2/3V4jPnueqD/XWQq/T2+qP+m29T7w3Zg/KV7ZvZPmNj9z8Yq/a7e6vlrqzL9igTE/cNtYPfUVPz9DX348uUSkP1MpfD/g5Ry/PZkzwGC1NT9cdrA+wrsKP6+tgb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAwXl82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJhlbPAAAAAAtyty/AAAAAPMkHrwAAAAAMePtPwAAAAB6Bfw9AAAAACKq3D8AAAAAEO9SvQAAAAA9TwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1X23NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL5PR70AAAAAAlkAwAAAAADW33o9AAAAAHTY+z8AAAAAd7ESvQAAAADXMPk/AAAAAJnXmTwAAAAAFdLvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3mwLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAd/gg+AAAAAKAX3L8AAAAAPksVvQAAAADGvvM/AAAAAARrEL4AAAAA3BTsPwAAAAAkXYa9AAAAAKKC2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG7Yu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2nfuvQAAAAA/kOC/AAAAABsItL0AAAAAtKDkPwAAAABFywW+AAAAAHsj3D8AAAAAyiaaPQAAAADUx/6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJMsBpTMqz+MAWyUTegDjAF0lEdArCmF/jKgZnV9lChoBkdAlMTrP6be/GgHTegDaAhHQKwqj/XGwRp1fZQoaAZHQJL2Ho8p1A9oB03oA2gIR0CsLA62v0ROdX2UKGgGR0CUecGI9C/oaAdN6ANoCEdArC3tGViWmnV9lChoBkdAkZu/07KaHGgHTegDaAhHQKw2GXAM2FZ1fZQoaAZHQJVbh95Qgs9oB03oA2gIR0CsNzkRBeHBdX2UKGgGR0CUp/495hScaAdN6ANoCEdArDi9pj+aSnV9lChoBkdAlphavV3EAGgHTegDaAhHQKw6hPXTVlR1fZQoaAZHQJO1uNfgJkZoB03oA2gIR0CsRjeC9RJmdX2UKGgGR0CVvhYQarFPaAdN6ANoCEdArEfupn6EanV9lChoBkdAlU12W+oLomgHTegDaAhHQKxJjcXWOIZ1fZQoaAZHQJG+u07bL2ZoB03oA2gIR0CsS2Q8fV7QdX2UKGgGR0CTeyEDhcZ+aAdN6ANoCEdArFOUOoYNzHV9lChoBkdAh9I1ZLZi/mgHTegDaAhHQKxUqZssQNF1fZQoaAZHQJEEmUNayKNoB03oA2gIR0CsVjjdP+GXdX2UKGgGR0CRWIJb+tKaaAdN6ANoCEdArFf0ojOcD3V9lChoBkdAifO11W8yvmgHTegDaAhHQKxiIGYa5wx1fZQoaAZHQJPrdlxwQ19oB03oA2gIR0CsY/FxffGddX2UKGgGR0CVuRQpWmxdaAdN6ANoCEdArGaGYUnG83V9lChoBkdAkMfcMNMGo2gHTegDaAhHQKxo+Tyrgfl1fZQoaAZHQJYOqcFyJbdoB03oA2gIR0CscULlV94NdX2UKGgGR0CVsaFGXokiaAdN6ANoCEdArHJDRnezlnV9lChoBkdAlZl6y4Wk8GgHTegDaAhHQKxztxXGOuJ1fZQoaAZHQJX0FaA4GUxoB03oA2gIR0CsdXGsNlRQdX2UKGgGR0CVVX0cwQDnaAdN6ANoCEdArH5zwc5sCXV9lChoBkdAlQW9bC79RGgHTegDaAhHQKyAA24NI9V1fZQoaAZHQJRSYBnzxw1oB03oA2gIR0CsgmI8hcJMdX2UKGgGR0CQiXthd+ocaAdN6ANoCEdArIVOuq3mWHV9lChoBkdAlAWLbUPQOWgHTegDaAhHQKyOgLehwl11fZQoaAZHQJLTNwPy08hoB03oA2gIR0Csj5WQnx8VdX2UKGgGR0CU7EDEm6XjaAdN6ANoCEdArJEdrl/6PHV9lChoBkdAlFsIfOlfq2gHTegDaAhHQKyS4R9PUKB1fZQoaAZHQJVcKDwpe/poB03oA2gIR0CsmvFrM1TBdX2UKGgGR0CUkO59mYjTaAdN6ANoCEdArJw9zuF6A3V9lChoBkdAlA1djXnQpmgHTegDaAhHQKyedUm2LHd1fZQoaAZHQJQlj+IdlupoB03oA2gIR0CsoSZG8VYZdX2UKGgGR0CRIxUi6g/UaAdN6ANoCEdArKvX0wrUb3V9lChoBkdAkE/PSMLncWgHTegDaAhHQKys6sHSncd1fZQoaAZHQJIjpxBE8aJoB03oA2gIR0CsrmbN0NjLdX2UKGgGR0CCRTDYRNAUaAdN6ANoCEdArLAmRxLkCHV9lChoBkdAlM2vqcEvCmgHTegDaAhHQKy4T0HyEtd1fZQoaAZHQJUNTI3irDJoB03oA2gIR0CsuW/XoTwldX2UKGgGR0CQL1iILw4LaAdN6ANoCEdArLsK9M9KVnV9lChoBkdAiaelt8/lhmgHTegDaAhHQKy9kzVtoBd1fZQoaAZHQJW2m0tyxRloB03oA2gIR0CszK4iX6ZZdX2UKGgGR0CUapBEa2nbaAdN6ANoCEdArM5zExZdOnV9lChoBkdAk+5ERnOB2GgHTegDaAhHQKzQQImgJ1J1fZQoaAZHQJP8uAkLQX1oB03oA2gIR0Cs0gAJLM9sdX2UKGgGR0CT3fxVyWAxaAdN6ANoCEdArNo8iwB5o3V9lChoBkdAlFUzzd1uBWgHTegDaAhHQKzbQ4z7/GV1fZQoaAZHQJLHYsbvPTpoB03oA2gIR0Cs3Pj6Fds0dX2UKGgGR0CWwtD0UXYUaAdN6ANoCEdArN+ds+FDfHV9lChoBkdAjlNr5RCQcWgHTegDaAhHQKzrBZowmE51fZQoaAZHQJS3ZP69CeFoB03oA2gIR0Cs7AmPxQSBdX2UKGgGR0CWR9P4EfT1aAdN6ANoCEdArO2GO4oZynV9lChoBkdAlas0K7ZnMGgHTegDaAhHQKzvUtJ4B3l1fZQoaAZHQJDZ2wA2hqVoB03oA2gIR0Cs96bpV0cPdX2UKGgGR0CTeB0/4ZdfaAdN6ANoCEdArPi/A0sOG3V9lChoBkdAlWKctTUAk2gHTegDaAhHQKz6OBikO7R1fZQoaAZHQIl6LsSkCV9oB03oA2gIR0Cs/Byon8badX2UKGgGR0CKwuYgJTl1aAdN6ANoCEdArQihaTwDvHV9lChoBkdAjuh3AM2FWWgHTegDaAhHQK0JtyYoiLV1fZQoaAZHQI9gFM7EHdJoB03oA2gIR0CtCzo2wV0tdX2UKGgGR0CVqqqhUR4AaAdN6ANoCEdArQzyvV3EAHV9lChoBkdAlFGe8Gs3hmgHTegDaAhHQK0VFqqOtGN1fZQoaAZHQJGQcte2NNtoB03oA2gIR0CtFjmTcIqtdX2UKGgGR0CRRmeEqUeNaAdN6ANoCEdArRe7eEZiu3V9lChoBkdAkBk08A7xNWgHTegDaAhHQK0ZdtJFspJ1fZQoaAZHQJHBrMV1wHZoB03oA2gIR0CtJQMLncL0dX2UKGgGR0CQ/HM8YAKfaAdN6ANoCEdArSa2XgLqlnV9lChoBkdAkmfGeYlY2mgHTegDaAhHQK0oVJ8v25B1fZQoaAZHQJKA8n3L3bpoB03oA2gIR0CtKhi6g/TtdX2UKGgGR0CU+lBkZrHmaAdN6ANoCEdArTI2TcIqsnV9lChoBkdAlUauG47Rv2gHTegDaAhHQK0zSIDYAbR1fZQoaAZHQJMmDh60IC5oB03oA2gIR0CtNMNUfgaWdX2UKGgGR0CRp45uIhyKaAdN6ANoCEdArTZ7dFfAsXV9lChoBkdAlTQVHjIaLmgHTegDaAhHQK1AW2Yv38J1fZQoaAZHQJLDeUVzp5hoB03oA2gIR0CtQhVXmvGIdX2UKGgGR0CUjaois4kvaAdN6ANoCEdArUSBt1p0wXV9lChoBkdAk+r9BnjABWgHTegDaAhHQK1HKFi8Wbh1fZQoaAZHQJQ67sVtXPtoB03oA2gIR0CtT07TDwYtdX2UKGgGR0CSRryBClabaAdN6ANoCEdArVBbwrlNlHV9lChoBkdAlGVgZGax5mgHTegDaAhHQK1R9P3ztkZ1fZQoaAZHQIzKWavzOHFoB03oA2gIR0CtU9ERJ2+xdX2UKGgGR0CUqI/xlQMyaAdN6ANoCEdArVy88DB/JHV9lChoBkdAk1wVr6+FlGgHTegDaAhHQK1eWKGcnVp1fZQoaAZHQJYmcIHC4z9oB03oA2gIR0CtYKzIeYD1dX2UKGgGR0CPve94/u9faAdN6ANoCEdArWOCyyD7InV9lChoBkdAlWya8tf5UWgHTegDaAhHQK1soSDh99d1fZQoaAZHQJZF0WHk92ZoB03oA2gIR0CtbbnxjJ+2dX2UKGgGR0CVYGSi/O+qaAdN6ANoCEdArW9S6vq1PXV9lChoBkdAkjrA2qDK5mgHTegDaAhHQK1xEnb7CSB1fZQoaAZHQJY8flq8DjloB03oA2gIR0CtePqQJXyRdX2UKGgGR0CTsO2gWac7aAdN6ANoCEdArXoB7b+LnHV9lChoBkdAlcyFx4ptrWgHTegDaAhHQK18QFj/dZd1fZQoaAZHQJYvrNxEORVoB03oA2gIR0CtfuSSNfgKdX2UKGgGR0CVXs6BAfMfaAdN6ANoCEdArYm4bOu7pXV9lChoBkdAlJ8KVD8cdmgHTegDaAhHQK2Kyvnr6cl1fZQoaAZHQJTfWd7OVxFoB03oA2gIR0CtjFA9Net0dX2UKGgGR0CUgHg2606YaAdN6ANoCEdArY4QTAWSEHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (997 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1362.8085280990344, "std_reward": 56.5250515628271, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T12:43:11.614263"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd5fe37275ccf5fee0c0f191479e20944d28ebc456e8ca033e3ff076ad523eee
3
+ size 2136