--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: test_model_graphics_classification_LION results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9557894736842105 --- # test_model_graphics_classification_LION This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1569 - Accuracy: 0.9558 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1765 | 0.99 | 42 | 0.1569 | 0.9558 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3